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a b s t r a c t

A new Hermite Least-Square Monotone (HLSM) reconstruction to calculate accurately
complex flows on non-uniform meshes is presented.

The coefficients defining the Hermite polynomial are calculated by using a least-square
method. To introduce monotonicity conditions into the procedure, two constraints are
added into the least-square system. Those constraints are derived by locally matching
the high-order Hermite polynomial with a low-order TVD or ENO polynomial. To emulate
these constraints only in regions of discontinuities, data-depending weights are defined;
those weights are based upon normalized indicators of smoothness of the solution and
are parameterized by a O(1) quantity. The reconstruction so generated is highly compact
and is fifth-order accurate when the solution is smooth; this reconstruction becomes
first-order in regions of discontinuities.

By inserting this reconstruction into an explicit finite-volume framework, a spatially
fifth-order non-oscillatory method is then generated. This method evolves in time the solu-
tion and its first derivative. In a one-dimensional context, a linear spectral analysis and
extensive numerical experiments make it possible to assess the robustness and the advan-
tages of the method in computing multi-scales problems with embedded discontinuities.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Nowadays, there is a growing need for high-order numerical methods in Computational Fluid Dynamics (CFD). Aero
acoustics, turbulence modelling or magneto hydrodynamics are domains for which high-order accuracy is strongly needed.
Flow problems with intricate structures and a broad range of characteristic scales cannot be efficiently modelled by conven-
tional second-order numerical methods; even on very fine meshes, those methods are unable to correctly extract a weak
signal from the mean flow.

Relying on a finite-volume framework, the definition of a reconstruction procedure of the solution from its cell-averaged
values is the first important task in obtaining a high-order numerical method.

Ideally, the reconstruction should ensure high-order accuracy, even on non-Cartesian meshes, while preserving the
monotonicity of the solution.

Starting from the pioneering work of Van-Leer in 1977 [1] much work was done on this topic. In 1987, Harten et al. devel-
oped the henceforth-classic category of essentially non-oscillatory schemes (ENO) [2]. Later, Liu et al. [3] improved ENO
schemes by developing the class of weighted essentially non-oscillatory (WENO) schemes (see [4] for a good overview on
these methods).
. All rights reserved.
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However, in spite of their vast field of application, standard WENO schemes still have deficiencies: due to the width of
their numerical stencil, the extension to non-Cartesian meshes is somewhat cumbersome; moreover, a wide stencil is not
optimum neither in terms of an accurate treatment of weak fluctuations, nor concerning the imposition of boundary condi-
tions. Considering those limits, a possibility is to introduce more information of the numerical solution in the neighbourhood
of any given cell. Recently, Liu [19] proposed a solution by using an overlapping cell representation of the solution with two
sets of cell averages; doing this way, a compact reconstruction to achieve higher resolution, was possible. Instead of using
overlapping cells, another solution is to consider the solution proposed by the class of CIP/multi-moment finite volume
method [20] in which the conservative variable is computed through a flux-form formulation and a non-conservative mo-
ment (first derivative or point-value) by a semi Lagrangian procedure.

In a previous work, we developed a new class of WENO schemes based on a convex combination of Hermite polynomials
[5]. On a one-dimensional basis and following the original WENO philosophy, the solution and its first derivative are evolved
in time and used into the polynomial reconstruction. With a three-points numerical stencil, we demonstrated that this pro-
cedure generates a sixth-order scheme (in terms of truncature error) in smooth regions and for small CFLs. Furthermore, a
new formulation of the non-linear weights used in the convex combination, enables to generate a non-linearly stable recon-
struction near discontinuities. The resulting scheme becomes of the fourth-order in the cells close to the discontinuity and
can even become first-order at the location of the discontinuity if the Hermite interpolation is potentially oscillatory. Com-
pared to the class of CIP schemes, the extra-moment is now effectively updated through a finite-volume formulation of flux
form, and therefore is numerically conserved. Maintaining these design principles, such a method can be straightforwardly
extended to multi-dimensional problems. This can be achieved by simply applying a Hermite reconstruction, direction-by-
direction.

Such a choice is valid as long as the mesh remains Cartesian or, at least, is smoothly varying. When this is no more the
case, the formal accuracy of the scheme, and its associated advantages, are largely lost. Moreover, the cross-derivatives of the
solution are not at all calculated: this necessitates refining exaggeratedly the mesh when rapid variations of the solution are
not aligned with the local grid directions.

Accordingly, we propose in this article a new approach that is designed to be compatible with multi-dimensional exten-
sions on non-Cartesian mesh. To preserve the compactness of the stencil, this approach still relies upon Hermite polynomi-
als; however, these polynomials are now constructed by a least square methodology.

The use of a least-square reconstruction to build a high-order finite-volume scheme is not a novelty. A few years ago,
Barth [6,7] produced a great amount of work on this subject. He constructed an upwind finite-volume scheme, via a
Godunov’s method, to be utilized on unstructured meshes. In the reconstruction step, Barth devised a least-square meth-
od to calculate the polynomial coefficients. The reconstruction could be either linear (second-order accuracy in smooth
regions; see [6] for details) or quadratic (third-order accuracy [7]). To enforce monotonicity in regions of discontinuities,
the piecewise linear (or quadratic) distribution of the solution in each cell was ‘‘limited” by using a specific limiter. The
resulting scheme proved to be highly successful on a large variety of problems, even on highly distorted unstructured
meshes.

In [6], Barth gave general indications to construct a least-square method including data-dependent weights. However, he
did not develop such a possibility into his paper. This is the merit of Ollivier-Gooch to have concretized this idea [8].

Ollivier-Gooch devises a least-square reconstruction scheme suitable for use on unstructured meshes and modifies it
to satisfy the ENO property. This modification is ensured by a data-dependent weighting that uses the residual of the
least-square problem - to detect stencils with non-smooth data – and the local gradient of the solution – to determine
which data within that stencil should be excluded – (see [8] for details). This way, the resulting scheme (‘‘DD-L2-ENO”
scheme) is demonstrated to be uniformly accurate, even in the presence of discontinuities, and allows only asymptoti-
cally small overshoots.

However, as Ollivier-Gooch states it in his article, such a scheme is not designed to produce high-order accurate solutions:
required stencils sizes for such high-accuracy grow very rapidly; in other words, the numerical stencil is not enough com-
pact. Moreover, this procedure necessitates to solve two least-square problems. Indeed, a least-square problem is first nec-
essary to evaluate the residual and then to calculate data-dependent weights; a second least-square problem, modified by
those weights, is then solved to give the derivatives needed by the reconstruction. This feature results in a very costly meth-
od, especially when this procedure is used for systems.

Considering the work of Barth and Ollivier-Gooch, our point of view is different: instead of constructing a polynomial and
then, to modify it in order to preserve the monotonicity, we introduce a monotonicity principle into the calculation of the
polynomial coefficients. This is achieved by using a least-square method with specific additional constraints.

Keeping in mind the necessary compactness of the discretization and capitalizing on the experience gained in [5], the
method we developed has the following features:

– A Hermite polynomial reconstruction using the solution and its first derivative is devised. The numerical stencil is
selected so as the interpolated solution using this reconstruction, is fifth-order accurate – in terms of truncature error
– in regions of smoothness.

– We utilize a least-square methodology to calculate the polynomial coefficients. When solved without any modifica-
tion, the resulting system generates a fifth-order approximation in regions of smoothness and Gibbs-like phenomena
in regions of discontinuities.
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– To introduce a monotonicity condition into this reconstruction, we add two constraints to the initial system. Imposing
that the oscillatory reconstruction locally coincides with a monotone reconstruction generates those constraints. This
monotone reconstruction is obtained from a TVD or ENO condition.

– To emulate those constraints only in regions of discontinuities, we define a normalized smoothness indicator that is
used to compute data-depending weights. Then, those weights are used to weight the constraints of monotonicity.

The result is a Hermite Least-Square Monotone (HLSM) reconstruction. Inserting this reconstruction into an upwind fi-
nite-volume formulation, we are able to devise a numerical scheme suited for computing multi-scales and non-linear prob-
lems, on irregular meshes.

This article is organized as follows: we start in Section 2 by defining the finite-volume framework of the method. In Sec-
tion 3, we detail the construction and implementation of the HLSM reconstruction, for 1D scalar and 1D Euler equations. The
interpolation polynomial is initially defined for use on irregular meshes; the specific procedure to generate a monotone
reconstruction is then emphasized. To this end, we conceive a new second-order ENO interpolation, suited for a Hermite for-
mulation: namely, the HENO2 reconstruction.

Finally, to have a first understanding of the capabilities of the method, we use a linear spectral analysis in Section 4.
According to the magnitude of the data-depending weights, this analysis gives us the salient features of the method in terms
of stability range, behaviour of the ‘‘spurious solution” and magnitude of the phase and amplitude errors. Technical details
concerning this spectral analysis are given in Appendix.

Lastly, Section 5 presents numerical tests. Computed solutions of scalar non-linear and 1D Euler equations are presented
and compared with WENO schemes, when necessary.

This work only concerns one-dimensional results.
2. Governing equations and finite-volume framework

2.1. Governing equations

Let the following scalar non-linear hyperbolic problem defined over the domain, X:
ut þ f ðuÞx ¼ 0; 8x 2 X

uðx; t ¼ 0Þ ¼ uoðxÞ

�
ð1Þ
Let r � ux and gðu; rÞ � f 0ðuÞ � ux ¼ f 0ðuÞ � r. Then by deriving (1), we can define the new non-linear hyperbolic problem over
X:
ut þ f ðuÞx ¼ 0; uðx; t ¼ 0Þ ¼ uoðxÞ
rt þ gðu; rÞx ¼ 0; rðx; t ¼ 0Þ ¼ u0oðxÞ

�
ð2Þ
Since gðu; rÞ ¼ f 0ðuÞ � r, this implies that the characteristic velocity, @g
@r, of the equation for the derivative variables, r, is f 0ðuÞ.

Consequently, both equations constituting (2) share the same characteristic velocity: this result is used in what follows to
generate a simple approximate Riemann solver discretizing (2). When the solution of (1) is discontinuous, system (2) is de-
rived by using the newly developed theory of ‘‘delta-shock wave” (see [18] for details).

Defining the discrete cell Ii � ½xi�1=2; xiþ1=2�;X is partitioned in N non-overlapping cells: X ¼
SN

i¼1Ii. The non-uniform cell
size will be typified by: Dxi � xiþ1=2 � xi�1=2 or Dxiþ1=2 � xiþ1 � xi. Lastly, we define the discrete cell averages of uðx; tÞ and
rðx; tÞ as: �uiðtÞ � 1

Dxi

R
Ii

uðx; tÞdx; �riðtÞ � 1
Dxi

R
Ii

rðx; tÞdx. Integrating (2) over Ii produces the following system of ordinary differ-
ential equations (ODE) for the variables �ui;�ri:
d�ui
dt ¼ � 1

Dxi
½f ðuðxiþ1=2; tÞÞ � f ðuðxi�1=2; tÞÞ�

d�ri
dt ¼ � 1

Dxi
½gðuðxiþ1=2; tÞ; rðxiþ1=2; tÞÞ � gðuðxi�1=2; tÞ; rðxi�1=2; tÞÞ�

8<: ð3Þ
By using the classical ‘‘method of lines”, time and space are separately discretized.

2.2. Spatial approximation: the numerical fluxes

Following the finite-volume methodology for generating a numerical scheme, the fluxes for uand r are approximated
according to:
f ðuðxiþ1=2; tÞÞ � ~f iþ1=2 � ~f ðuL
iþ1=2;u

R
iþ1=2Þ

gðuðxiþ1=2; tÞ; rðxiþ1=2; tÞÞ � ~giþ1=2 � ~gðuL
iþ1=2; r

L
iþ1=2; u

R
iþ1=2; r

R
iþ1=2Þ

(
ð4Þ
uL;R
iþ1=2 (resp. rL;R

iþ1=2Þ represent the numerical approximations to the point values uðxiþ1=2; tnÞ (resp. rðxiþ1=2; tnÞÞ, Fig. 1. The way
of constructing the numerical fluxes, ~f ; ~g, defines the upwind method.
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Fig. 1. Reconstruction of the point values from cell averages at the interface x ¼ xiþ1=2.
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To calculate those numerical fluxes, we selected the HLLE (Harten, Lax and Van-Leer) approximate Riemann solver [9].
Thus, we get the following expressions for the numerical fluxes ~f and ~g:
~f iþ1=2 ¼
kþ

iþ1=2
f ðuL

iþ1=2
Þ�k�iþ1=2f ðuR

iþ1=2
Þ

kþ
iþ1=2

�k�iþ1=2
þ

kþ
iþ1=2

�k�iþ1=2

kþ
iþ1=2

�k�iþ1=2
ðuR

iþ1=2 � uL
iþ1=2Þ

~giþ1=2 ¼
kþ

iþ1=2
gðuL

iþ1=2 ;v
L
iþ1=2Þ�k�iþ1=2gðuR

iþ1=2 ;v
R
iþ1=2Þ

kþ
iþ1=2

�k�iþ1=2
þ

kþ
iþ1=2

�k�iþ1=2

kþ
iþ1=2

�k�iþ1=2
ðvR

iþ1=2 � vL
iþ1=2Þ

8>><>>: ð5Þ
With, in the scalar case, the following choices for the characteristic velocities k�iþ1=2:
kþiþ1=2 �maxðf 0ðuL
iþ1=2Þ; f 0ðuR

iþ1=2Þ; aiþ1=2;0Þ
k�iþ1=2 �minðf 0ðuL

iþ1=2Þ; f 0ðuR
iþ1=2Þ; aiþ1=2; 0Þ

(
ð6Þ

With : aiþ1=2 �
ðf ðuR

iþ1=2Þ � f ðuL
iþ1=2ÞÞ=ðuR

iþ1=2 � uL
iþ1=2Þ if uR

iþ1=2–uL
iþ1=2

f 0ðuL
iþ1=2Þ otherwise

(
ð7Þ
The discretization of the spatial operator generates an algebraic system of ODEs in time, for the discrete unknowns ð�ui;�riÞ.
This system is integrated by using a third-order TVD Runge–Kutta scheme [12].
3. Hermite Least-Square Monotone (HLSM) reconstruction

In this section, we partly use notations introduced by Ollivier-Gooch in [8].

3.1. Least-square reconstruction from cell-averages ð�ui;�riÞ

To begin, we select an optimal Hermite polynomial of degree 4, denoted by uoptðxÞ and defined on the three-points stencil
fIi�1; Ii; Iiþ1g, Fig. 2: uoptðxÞ �

P4
j¼0ajðx� xiÞj.

Then, using the definition of �ui:
�ui �
1

Dxi

Z
Ii

uoptðxÞdx ¼ 1
Dxi

X4

j¼0

aj

Z
Ii

ðx� xiÞjdx ð8Þ
and introducing the practical notation:
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Fig. 2. Three-points stencil for the HLSM reconstruction.
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xn
i �

1
Dxi

Z
Ii

ðx� xiÞndx ð9Þ
We obtain the following result:
uoptðxÞ � �ui ¼
X4

j¼1

aj½ðx� xiÞj � xj
i� ð10Þ
And, consequently:
1
Dxj

Z
Ij

ðuoptðxÞ � �uiÞdx � �uj � �ui ¼ a1x̂j þ a2x̂2
j þ a3x̂3

j þ a4x̂4
j j 2 fi� 1; iþ 1g ð11Þ

where we defined : x̂n
j �

1
Dxj

Z
Ij

½ðx� xiÞn � xn
i �dx j 2 fi� 1; iþ 1g ð12Þ
Therefore, we get the first useful algebraic relation defining the Hermite reconstruction:
�uj � �ui ¼
X4

n¼1

anx̂n
j ; j 2 fi� 1; iþ 1g ð13Þ
The x̂n
j terms are metric terms that only depend on the mesh. Using the definition (9), those terms can be developed to give

the following results:
x̂j ¼ ðxj � xiÞ
x̂2

j ¼ ðxj � xiÞ2 þ 1
12 ðDx2

j � Dx2
i Þ

x̂3
j ¼ ðxj � xiÞ3 þ

Dx2
j

4 ðxj � xiÞ

x̂4
j ¼ ðxj � xiÞ4 þ

Dx2
j

2 ðxj � xiÞ2 þ 1
80 ðDx4

j � Dx4
i Þ

8>>>>>><>>>>>>:
j 2 fi� 1; iþ 1g ð14Þ
Practically, those terms are pre-calculated and stored in computer memory.
Now, by defining roptðxÞ � duopt ðxÞ

dx and by following the same procedure as for uoptðxÞ, we get the second useful algebraic
relation:
�rj � �ri ¼
X4

n¼2

nanx̂n�1
j ; j 2 fi� 1; iþ 1g ð15Þ
Then, gathering (13) and (15), we obtain the following algebraic system:
x̂i�1 x̂2
i�1 x̂3

i�1 x̂4
i�1

x̂iþ1 x̂2
iþ1 x̂3

iþ1 x̂4
iþ1

0 2x̂i�1 3x̂2
i�1 4x̂3

i�1

0 2x̂iþ1 3x̂2
iþ1 4x̂3

iþ1

26664
37775�

a1

a2

a3

a4

0BBB@
1CCCA

i

�

L1

L2

L3

L4

26664
37775�

a1

a2

a3

a4

0BBB@
1CCCA

i

¼

�ui�1 � �ui

�uiþ1 � �ui

�ri�1 � �ri

�riþ1 � �ri

0BBB@
1CCCA ð16Þ
At this step, system (16) is a 4� 4 system and it generates a fifth-order oscillatory reconstruction.
To introduce monotonicity into the calculation of the derivatives, fajg, let us define over the cell Ii, a low-order monotone

polynomial, namely: uMðxÞ.
This polynomial is defined either by a TVD or by an ENO principle. Then, this polynomial is used in order to produce two

supplementary equations:
1
Dxi�1=2

Z xi

xi�1

uoptðxÞdx ¼ 1
Dxi�1=2

Z xi

xi�1

uMðxÞdx

1
Dxiþ1=2

Z xiþ1

xi

uoptðxÞdx ¼ 1
Dxiþ1=2

Z xiþ1

xi

uMðxÞdx

8>>><>>>: ð17Þ
In words, the high-order polynomial, uoptðxÞ, must locally coincide, in average, with the monotone low-order polynomial,
uMðxÞ. Therefore, using the definition of uoptðxÞ, given by Eq. (10), and then, developing the left-hand side of (17), one obtains
two supplementary algebraic conditions for the fajg:
�a1
Dxi�1=2

2
þ a2

Dx2
i�1=2

4
� a3

Dx3
i�1=2

4
þ 3a4

Dx4
i�1=2

16
¼ 1

Dxi�1=2

Z xi

xi�1

uMðxÞdx� �ui

a1
Dxiþ1=2

2
þ a2

Dx2
iþ1=2

4
þ a3

Dx3
iþ1=2

4
þ 3a4

Dx4
iþ1=2

16
¼ 1

Dxiþ1=2

Z xiþ1

xi

uMðxÞdx� �ui

8>>>><>>>>: ð18Þ
Those two relations are re-interpreted as monotonicity constraints to be added to system (16) in order to generate a mono-
tone reconstruction. Consequently, we obtain the following 6� 4 over-determined system:
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L1

L2

L3

L4

L5

L6

2666666664

3777777775
�

~a1

~a2

~a3

~a4

0BBB@
1CCCA

i

¼

�ui�1 � �ui

�uiþ1 � �ui

�ri�1 � �ri

�riþ1 � �ri

B5

B6

0BBBBBBBB@

1CCCCCCCCA
() L� A ¼ B ð19Þ

with :

L5 � �Dxi�1=2

2
;
Dx2

i�1=2

4
;�

Dx3
i�1=2

4
;3

Dx4
i�1=2

16

" #

L6 �
Dxiþ1=2

2
;
Dx2

iþ1=2

4
;
Dx3

iþ1=2

4
;3

Dx4
iþ1=2

16

" #
8>>>>><>>>>>:

and :
B5 � 1

Dxi�1=2

R xi
xi�1

uMðxÞdx� �ui

B6 � 1
Dxiþ1=2

R xiþ1
xi

uMðxÞdx� �ui

8<: ð20Þ
Doing this, it becomes possible to introduce a monotonicity principle into the calculation of the polynomial coefficients, f~ajg.
Using a least-square methodology, i.e. by minimizing the functional jL� A� Bj2, solves this system:

However, the monotonicity principle introduced by (17) is only desirable when the solution is discontinuous or when
there exist strong gradients; in regions of smoothness, constraints (17) must be relaxed to obtain the best accuracy for
the reconstruction. This process is ensured by the introduction of a data-depending weight, wi, into (19).

3.2. Weighting of the monotonicity constraints

The principles we adopted to calculate the data-depending weight, wi, are as follows:

– wi must smoothly vary between a very small value, in regions of smoothness, and a value O(1) at the location of a
discontinuity.

– In regions of smoothness, the modification introduced by wi must not generate a term that would be greater than the
spatial truncature error of the scheme.

To begin, we calculate the general indicator of smoothness over the cell Ii [4]:
ISi �
1

u2
max

X
k

Dx2k�1
i �

Z
Ii

dkuopt

dxk

 !2

dx ð21Þ
where umax is calculated over the whole calculation domain X : umax ¼max jx2Xuj. This indicator provides a measure of the
smoothness of the solution over the cell Ii, according to the stencil selected to define uoptðxÞ on that cell. In regions of smooth-
ness, ISi << 1, whereas ISi ¼ Oð1Þ > 1 in cells with strong gradients or discontinuities and tends towards infinity when the
mesh is refined. From the definition of uoptðxÞ, formula (21) can be developed to give:
ISi ¼ a2
1Dx2

i þ
13
3

a2
2 þ

1
2

a1a3

� �
Dx4

i þ
21
5

a2a4 þ
3129

80
a2

3

� �
Dx6

i ð22Þ
This formula is valid even on non-uniform meshes. In this formula, the fajg are solution of system (16). Since this system is a
4� 4 system of which the coefficients are only metric terms, it is inverted once, at the beginning of the computations, by a
direct method; the result is then stored in computer memory. Therefore, it only remains to calculate ISi, at each time-step, by
(22).

Remark. The coefficients fajg and f~ajg should not be confused in formulae above. The coefficients fajg are solution of (16)
and characterize the high-order oscillatory polynomial, uoptðxÞ. The coefficients f~ajg are solution of (19) and represent the
modified version of uoptðxÞ to get a monotone reconstruction; henceforth, this polynomial will be noted, ~uoptðxÞ.

Having calculated the smoothness indicators, ISi, for each cell Ii, we introduce a normalized smoothness indicator, namely
bi, defined on Ii and such that:
bi ! 0 in regions of smoothness
bi ! 1� if there exist a discontinuity

�
when Dx! 0 ð23Þ
Practically, we use the formulation experimented in [5]:
bi �
ðISiÞ2

1þ ðISiÞ2
; 8x 2 Ii ð24Þ
This normalized smoothness indicator was selected in order to enhance the robustness of the method. Indeed, whatever the
problem encountered, this sensor always varies into the interval [0,1]; thus, it becomes easier to define a general procedure
that adapts automatically to the solution, independently of the magnitude of the discrete variable, �ui. In addition, this choice
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facilitates the calculation of the data-depending weight, wi, and ensures that this weight introduces a correction that is less
than the truncature error when the solution is smooth. This latter point will be checked in a section that follows.

One can demonstrate that bi ¼ OðDx4Þ in regions of smoothness of the solution and approaches unity by its lower bound
in cells crossed by a discontinuity [5].

Now, we can define the data-depending weight, wi, that is devised to modulate conditions (18) into the linear system
(19):

2

wi � a� bi ¼
a� ISi

1þ IS2
i

ð25Þ
where a represents an arbitrary parameter such that a ¼ Oð1Þ. In what follows, a will be termed the ‘‘monotonicity
parameter”.

Once wi is defined, it can be introduced in (19) to weigh the monotonicity constraints (18).
Thus, (19) is modified by the new quantities:
eB5;6 � wiB5;6 ! B5;6eL5;6 � wiL5;6 ! L5;6

(
ð26Þ
All the remaining components of (19) are left unchanged.
Now, to completely define the HLSM reconstruction, it is left to devise the monotone polynomial, namely uMðxÞ.

3.3. Definition of the monotone polynomial, uMðxÞ

3.3.1. TVD monotonicity condition
To impose a TVD monotonicity constraint into (19), we select the simplest TVD limiter, known into the literature as the

‘‘minmod limiter”. Then, on a non-uniform mesh, uMðxÞ is simply calculated according to the following formula:
uMðxÞ � �ui þ ðx� xiÞ �min mod
�uiþ1 � �ui

Dxiþ1=2
;
�ui � �ui�1

Dxi�1=2

� �
8x 2 Ii ð27Þ
Thus, it becomes possible to formulate eB5;6 in (19):
eB5 � �wi
Dxi

2
�min mod

�uiþ1 � �ui

Dxiþ1=2
;
�ui � �ui�1

Dxi�1=2

� �
eB6 � wi

Dxi

2
�min mod

�uiþ1 � �ui

Dxiþ1=2
;
�ui � �ui�1

Dxi�1=2

� �
8>>><>>>: ð28Þ
The HLSM reconstruction that uses (28) as a monotonicity constraint for (19) will be referenced in what follows as the
‘‘HLSM–Minmod” reconstruction.

However, it is well known that the coefficient in the OðDxÞ term in (17) becomes discontinuous at local extrema, leading
to a loss of accuracy at such points. More generally, TVD schemes, independently of their particular form, are necessarily only
first-order accurate at local extrema.

To circumvent such a problem, we develop as an alternative a second-order ENO reconstruction. Specifically, this recon-
struction is based upon a Hermite formulation of the interpolator: we call this solution, the ‘‘HENO2 reconstruction”.

3.3.2. ENO monotonicity condition
To devise a HENO2 reconstruction, we use the ‘‘reconstruction via a primitive function” technique developed by Harten

et al. in [2]. The algorithm that follows is adapted for a Hermite polynomial.
We introduce H2ðx; �u;�rÞ, a piecewise polynomial function of x that interpolates ð�u;�rÞ at the points fxig, i.e.:
1
Dxi

R
Ii

H2ðx; �u;�rÞdx ¼ �ui

1
Dxi

R
Ii

d
dx H2ðx; �u;�rÞdx ¼ �ri

(
ð29Þ

H2ðx; �u;�rÞ � q2;jþ1=2ðx; �u;�rÞ 8x 2 ½xj; xjþ1� ð30Þ
where q2;jþ1=2 is a quadratic polynomial in x: it is the unique quadratic polynomial of which the primitive interpolates
ð�uðxÞ;�rðxÞÞ over the interval ½xj; xjþ1�. More precisely, q2;jþ1=2 can be expressed around the basis point, xj, to give:
q2;jþ1=2 � D0 þ D1;jþ1=2 � ðx� xjÞ þ D2;jþ1=2 � ðx� xjÞ2 8x 2 ½xj; xjþ1� ð31Þ

with :
D0 ¼ �uj � D2;jþ1=2

Dx2
jþ1=2
12

D1;jþ1=2 ¼ ð�ujþ1 � �uj � Dx2
jþ1=2 � D2;jþ1=2Þ=Dxjþ1=2

8<: ð32Þ
Therefore, D2;jþ1=2 � 1
2 uxxji

� �
must be determined for the quadratic polynomial, q2;jþ1=2, to be uniquely determined over the

interval ½xj; xjþ1�.
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There are two possibilities to specify D2;jþ1=2 over ½xj; xjþ1�.
The first one uses the quantities �uj; �ujþ1;�rjþ1. In that case, one can specify D2;jþ1=2, noted Dþ2;jþ1=2:
Dþ2;jþ1=2 �
�uj � �ujþ1 þ Dxjþ1=2 � �rjþ1

Dx2
jþ1=2

ð33:aÞ
which is such that: Dþ2;jþ1=2 ¼ 1
2 uxxjj þ OðDxjÞ.

The second choice for D2;jþ1=2, noted D�2;jþ1=2, relies upon the quantities �uj; �ujþ1;�rj and gives the following result:
D�2;jþ1=2 �
�ujþ1 � �uj � Dxjþ1=2 � �rj

Dx2
jþ1=2

ð33:bÞ
The polynomial that relies upon the stencil represented by Dþ2;jþ1=2, insists on the numerical information coming from the
right of that stencil; using D�2;jþ1=2, we insist on the information coming from the left of this same stencil.

Following Harten et al. [2] to uniquely determine q2;jþ1=2 over ½xj; xjþ1�, we select the polynomial that is the less oscillatory.
This operation is accomplished by defining:
D2;jþ1=2 �min modðD�2;jþ1=2;D
þ
2;jþ1=2Þ ð34Þ
Therefore, we have calculated over ½xj; xjþ1� a parabolic polynomial that is such that:
q2;jþ1=2ðx; �u;�rÞ ¼ uðxÞ þ OðDx2
j Þ

q2;jþ1=2ðx; �u;�rÞ ¼ �uðxÞ þ OðDx3
j Þ

(
8x 2 ½xj; xjþ1� ð35Þ
Then, the piecewise function, H2ðx; �u;�rÞ, is defined and can be utilized to construct the monotone polynomial, uMðxÞ, over the
interval Ii. To get en ENO interpolation, we define uMðxÞ as follows:
uMðxÞ ¼ �ui þ ðx� xiÞ �min mod
d
dx

H2ðxi � 0; �u;�rÞ; d
dx

H2ðxi þ 0; �u;�rÞ
� �

8x 2 Ii ð36Þ
From this choice, it follows that:

(i) wherever uðxÞ is smooth:
dk

dxk
uMðxÞ ¼

dk

dxk
uðxÞ þ OðDx3�k

i Þk 2 f1;2g ð37:aÞ
(ii) uMðxÞ is an essentially non-oscillatory second-order interpolation of u in the sense that:
TVðuMð:ÞÞ 6 TVðuÞ þ OðDx2
i Þ ð37:bÞ
Now, we can introduce this polynomial into (18), in order to formulate the ENO-monotonicity constraint for system
(19):
 eB5 ¼ �wi

Dxi
2 �min mod d

dx H2ðxi � 0; �u;�rÞ; d
dx H2ðxi þ 0; �u;�rÞ

� �
eB6 ¼ wi

Dxi
2 �min mod d

dx H2ðxi � 0; �u;�rÞ; d
dx H2ðxi þ 0; �u;�rÞ

� �(
ð38Þ
Therefore, comparing with (28), the HENO formulation introduces an additional term, D2;i�1=2 � Dx2
i�1=2, into the calculation of

the slope of the solution. This term not only is a function of the variable, u, but also of its first derivative, r � ux, and enables
to calculate smooth extrema with a second-order accuracy.

Thus, by using a Hermite interpolation, we have generated a second-order ENO interpolation based on a three-points
stencil; this result should be contrasted with the standard ENO2 reconstruction that necessitates a five-points stencil to
get an equivalent accuracy.

Combining (19) and (38), the resulting reconstruction will be recognized in what follows as the ‘‘HLSM–HENO2”
interpolation.

3.4. The HLSM upwind scheme for scalar hyperbolic problems

The final form of the HLSM upwind scheme is given by:
@f
@x

����
i

¼ ð
~f iþ1=2 � ~f i�1=2Þ

Dxi

@g
@x

����
i

¼ ð
~giþ1=2 � ~gi�1=2Þ

Dxi

8>>><>>>: ð39Þ
and:
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uL
iþ1=2 ¼ ~uoptðxiþ1=2Þ ¼ �ui þ ~a1

Dxi
2 þ ~a2

Dx2
i

6 þ ~a3
Dx3

i
8 þ ~a4

Dx4
i

20

rL
iþ1=2 ¼ d

dx
~uoptðxiþ1=2Þ ¼ �ri þ ~a2Dxi þ ~a3

Dx2
i

2 þ ~a4
Dx3

i
2

8<: ð40Þ
~f iþ1=2 and ~giþ1=2 are calculated by the HLLE solver (formulae (5)–(7)). To calculate ~uoptðxÞ, over Ii, system (19) with modifica-
tion (26) is inverted. The data-depending weight, wi, is calculated according to (25) and the monotone polynomial, uMðxÞ,
that defines eB5;6 is calculated by selecting either a TVD-monotonicity constraint (formula (28)) or an ENO-monotonicity con-
straint (formula (38)).

The result is a polynomial, ~uoptðxÞ, locally defined over the cell Ii, and conceived to be non-oscillatory, in the mean (con-
ditions (17)). The resulting scheme is spatially fifth-order accurate in smooth regions of the solution and tends towards a
first-order accuracy in regions crossed by a discontinuity.

Remark. Practically, system (19) is inverted by using Householder transforms to reduce the left-hand side of (19) to upper-
triangular form. When the cell aspect ratio gets very large, one can note some conditioning problems if one use normal
equations to solve the least-square problem. Householder transforms are much less sensitive to the matrix condition number
[6]; this implies a greater robustness of the resulting method.
3.5. Extension to non-linear systems: the one-dimensional Euler equations

In this section, we extend the HLSM scheme to solve systems of hyperbolic conservation laws. Specifically, we consider
the one-dimensional Euler equations in the following conservation form:
@U
@t
þ @FðUÞ

@x
¼ 0 ð41Þ
where : U � ½q;qu;qE�t ; F � ½qu;qu2 þ p;quH�t ð42Þ
H � Eþ p=q is the specific total enthalpy and this set of equations is closed by the equation-of- state of an ideal gas:
p ¼ ðc� 1ÞðqE� u2=2Þ; c ¼ 1:40.

In order to use a Hermite procedure, we derive the following set of systems from (41):
@U
@t
þ @FðUÞ

@x
¼ 0

@V
@t
þ @GðU;VÞ

@x
¼ 0

8>><>>: ð43Þ
where we defined: V � ½ðqÞx; ðquÞx; ðqEÞx�
t
;G � ½ðquÞx; ðqu2 þ pÞx; ðquHÞx�

t .
As in the scalar case, the semi-discrete conservative finite-volume scheme discretizing (43) is then written as:
d�Ui

dt
¼ � 1

Dxi
½eFiþ1=2 � eFi�1=2�

d�Vi

dt
¼ � 1

Dxi
½eGiþ1=2 � eGi�1=2�

8>>><>>>: ð44Þ
To calculate ðeF iþ1=2; eGiþ1=2Þ, the HLLE solver defined in the scalar case by (5)–(7), is simply extended to the case of the Euler
equations by re-defining the characteristic velocities k�iþ1=2:
kþiþ1=2 � maxðuL
iþ1=2 þ aL

iþ1=2;u
R
iþ1=2 þ aR

iþ1=2; �uiþ1=2 þ �aiþ1=2;0Þ
k�iþ1=2 � minðuL

iþ1=2 � aL
iþ1=2;u

R
iþ1=2 � aR

iþ1=2; �uiþ1=2 � �aiþ1=2; 0Þ

(
ð45Þ
where aL;R
iþ1=2 �

ffiffiffiffi
cp
q

q ���L;R
iþ1=2

is the speed of sound for an ideal gas and ð�uiþ1=2; �aiþ1=2Þ are calculated by using Roe’s average.

The conservative point-values, UL;R
iþ1=2;V

L;R
iþ1=2

	 

, are calculated from the interpolated primitive variables qL;R

iþ1=2;
h

uL;R
iþ1=2; p

L;R
iþ1=2�

t and ðqxÞ
L;R
iþ1=2; ðuxÞL;Riþ1=2; ðpxÞ

L;R
iþ1=2

h it
. Those variables are interpolated by using the HLSM procedure developed in

the scalar case. We ensure the time-integration of (44) by using the third-order TVD Runge–Kutta procedure [12].

4. Numerical validation

4.1. Spectral analysis

Our purpose is twofold: firstly to study the linear stability of the method, secondly to estimate the influence of the mono-
tonicity parameter, a.
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Technical details concerning this sub-section are given in Appendix. To simplify the notations, we suppose that the mesh
is uniform ðDxi ¼ Dx � CteÞ.

To study the spectral behaviour of the HLSM scheme, we consider the linear system that follows:
Ut þ aUx ¼ 0 ða � Cte > 0Þ ð46Þ

with: U � ½u; r � ux�t .

Using the so-called ‘‘method of lines” and first discretizing the spatial operator, produce the following system of ODEs in
time:
dU
dt

����
i

þ a
UL

iþ1=2 � UL
i�1=2

Dx
¼ 0 ð47Þ
Then, a discrete Fourier transform gives the following result (see Appendix for a detailed explanation):
dbU
dt
¼ Gðb; m;aÞ � bU ð48Þ
Finally, integrating this result by the third-order TVD Runge–Kutta scheme [12] over the interval ½tn; tnþ1�, we get:
bUnþ1 ¼ Gðb; m;aÞ � bUn ð49Þ
In the Fourier space, this relation is equivalent to the integrated form of (47) in the physical space. Therefore, to study the
structure of the 2� 2 complex matrix, C, is equivalent to analyze the space-time properties of the algebraic form discretizing
(46).

This complex matrix, Cðb; m;aÞ, – also called in the literature, the ‘‘complex amplification matrix” – makes it possible to
define the following quantities (see Appendix for details):

– the ‘‘accurate” and ‘‘spurious” eigenvalues;
– discretization and ‘‘spurious” errors;
– the truncature error;
– the amplitude and phase errors.

All these quantities can be expressed in terms of the three parameters of this study: the number of cells-per-wavelength,
NðN � b ¼ 2pÞ, the CFL number, m ð� aDt=DxÞ and the monotonicity parameter, a, introduced to modulate wi, (formula (25)).

To begin this analysis, we select the case wi ¼ a� Dx4 into the algebraic relations defining the HLSM interpolation. In
other words, we suppose that the numerical solution lies in a region of smoothness: in such a case, the choice of the mono-
tonicity constraint is indifferent.

Unless mentioned, the CFL number is set to 0.8 in those results. Fig. 3 presents results for a centred initialization of the
first-derivative ðrðxi; t ¼ 0Þ ¼ ðuðxiþ1; t ¼ 0Þ � uðxi�1; t ¼ 0ÞÞ=2DxÞ.

As one can note it, the modulus of both accurate and spurious eigenvalues remains everywhere below unity: the
scheme is linearly stable, Fig. 3(a). This is true as long as the CFL is lower than the unity; in the opposite case, the modulus
of the accurate eigenvalue becomes greater than one and the scheme is unstable. Fig. 3(b) shows a very interesting result:
at a given time ðt ¼ 100� DtÞ and whatever the spatial discretization selected (b varying), the ‘‘spurious” error remains
lower than the truncature and the discretization errors. To verify if this result is preserved in time, we present
Fig. 3(c): as we can note it, the magnitude of the ‘‘spurious” error on a given mesh – N ¼ 10 cells-per-wavelength: a rea-
sonable choice for a high-order scheme – decreases very rapidly when the time grows up. Therefore, we can conclude that
the spurious component of the numerical solution never ‘‘pollutes” the accurate component of that solution. Finally,
Fig. 3(d), checks the global accuracy of the method by plotting the truncature error versus the phase angle: the global
third-order accuracy is confirmed.

Furthermore, we can analytically formulate in the Fourier space, the spatial truncature error, ŝðbÞ, when b! 0 (see
Appendix). Indeed, by using a Taylor series expansion, the result is the following:
ŝ ¼ 1
360

b5 þ Oðb6Þ ð50Þ
Obviously, this result indicates that the spatial accuracy of the scheme – fifth-order accuracy –, is free of the value of the
monotonicity parameter, a. Therefore, we can conclude that a has no influence on the accuracy of the solution in regions of
smoothness: a is only selected to optimize the capture of discontinuities.

Now, if we modify the initialization process of the first-derivative, the result is somewhat different: this is illustrated by
Fig. 4. For an upwind first-order discretization, the level of the initial error becomes higher: in some cases ðN P 35Þ this in-
crease can generate a ‘‘spurious” error greater than the truncature error, Fig. 4(a). However, even in this case, the ‘‘spurious”
error rapidly decreases when the time grows up, Fig. 4(b). This tendency is unchanged when the first derivative is initialized
to the zero value, Fig. 4(c) and (d).

Lastly, Fig. 5 presents the levels of the amplitude and phase errors according to N and the CFL.



Fig. 3. Spectral analysis for the HLSM scheme (centred initialization of the derivative): m ¼ 0:80; wi ¼ a� Dx4. (a) Accurate and spurious eigenvalues; (b)
spatial evolution of errors at tn ¼ 100� Dt; (c) temporal evolution of errors for N ¼ 10 cells-per-wavelength; (d) total truncature error.
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As one can see it, only 12 cells-per-wavelength are necessary to get an amplitude error at 0.1% for CFL = 0.8. For this latter
value, less than 10 cells-per-wavelength are necessary to get a 0.1% phase error.

Now, we look at the case wi ¼ OðaÞ.
As already mentioned, this case can correspond to two cases: (i) the presence of a discontinuity into the solution, (ii) the

existence of an extremum. Let us study the first case.
When a discontinuity exists, both monotonicity constraints (TVD and ENO) return the zero value for the local slope of the

solution ðeB5 ¼ eB6 ¼ 0Þ. Inserting this result into the complex amplification matrix, we obtain the following result concerning
the spatial truncature error:
ŝ ¼ a2

2ða2 þ 4Þbþ Oðb2Þ ð51Þ
As predicted, the scheme becomes first-order; moreover, the size of the truncature error now depends on the value of a: the
dissipative nature of the scheme can be modulated by the value of a. This result means that the numerical handling of a dis-
continuity will be influenced by the choice of the parameter, a. Fig. 6(a) and (b) present numerical phase and amplitude er-
rors for this case: comparing to Fig. 5 the loss of accuracy is clearly visible.

Now, let us have a look to the second case, i.e. the existence of a smooth extremum into the solution while wi ¼ OðaÞ.
Obviously, there is no change if the monotonicity condition relies upon a TVD principle since it returns the zero value for



Fig. 4. Spectral analysis for the HLSM scheme: m ¼ 0:80; wi ¼ a� Dx4. Initialization of the first derivative: (a, b) rðxi; t ¼ 0Þ ¼ uðxi ;t¼0Þ�uðxi�1 ;t¼0Þ
Dx ; (c, d)

rðxi; t ¼ 0Þ � 0. (a, c) Spatial evolution of errors at tn ¼ 100� Dt; (b, d) temporal evolution of errors for N ¼ 40 cells-per-wavelength.
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the slope of the solution. Therefore, suppose we select the ENO condition (38) to define the HLSM scheme. In this case, we
obtain the following result for the spatial truncature error:
ŝ ¼ 77a2

15ð49a2 þ 256Þb
2 þ Oðb3Þ ð52Þ
Thus, the ENO-monotonicity constraint generates a second-order scheme in that case. Clearly, this is an improvement when
compared with a TVD constraint. This result is illustrated by Fig. 6(c) and (d): for a given CFL number and a fixed spatial
resolution ðNÞ, the error level is lower than the one presented by Fig. 6(a) and (b).

Summarizing, this analysis gives us two significant results:

– The accuracy of the scheme is free of the monotonicity parameter, a. This parameter is only useful to optimize the
capture of possible discontinuities.

– The initialization process of the first-derivative has no influences upon the stability or the accuracy of the scheme as
long as the CFL is lower than one.

Incidentally, this analysis shows us the benefit we can hope by employing an ENO-monotonicity constraint when there are
smooth data for which wi ¼ Oð1Þ.

For the entire scalar test-cases that follow, the monotonicity parameter, a, is set to the value 6. This value was optimized by
trial and errors when discontinuities are present into the solution.



Fig. 5. Spectral analysis for the HLSM scheme: m ¼ 0:80; wi ¼ a� Dx4. (a) Amplitude error; (b) phase error.
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4.2. Non-linear scalar problem: the Burgers equation

We solve the following non-linear scalar Burgers equation:
ut þ
u2

2

� �
x

¼ 0 8x 2 ½0;2� ð53Þ
with the initial condition: uðx; t ¼ 0Þ ¼ 1=2þ sinðpxÞ and a 2-periodic boundary condition. To begin, a uniform mesh with N
cells is used for this test case. For those results, we utilize the HUWENO5 scheme of Qiu and Shu as a Ref. [11]. The CFL num-
ber is defined as: maxi un

i

�� ��Dt=miniDxi. Unless mentioned, its value is taken as 0.5 for both HLSM and HUWENO5 schemes. For
the accuracy tests, since the time integration method incurs OðDt3Þ errors, the time step is chosen to be Dt ¼ OðDx2Þ in order
for the discretization error of the overall scheme to be a measure of the spatial convergence only.

When t ¼ 1=2p, the solution is still smooth and the discrete errors (L1 and L1 norms) and numerical orders of accuracy
are shown in Table 1 (HLSM–Minmod scheme), Table 2 (HLSM–HENO2 scheme) and Table 3 (HUWENO5 scheme). As can be
seen, all the schemes reach their designed order of accuracy; however, the HLSM–HENO2 version produces the best results
on coarse meshes. This latter result indicates that the monotonicity constraint is active on coarse meshes: this means that
the data-depending weight, wi, is not always negligible on such meshes. However, when N > 40, both versions of the HLSM
scheme produce equivalent results; those results remain better than those obtained with the HUWENO5 scheme.

When t ¼ 3=2p, a shock has already appeared in the solution and it is located at x ¼ 1:238.
Fig. 7 shows the numerical solution for both versions of the HLSM scheme on a uniform mesh with N ¼ 80 grid points. As

one can note it, the shock is captured without any numerical oscillation in all cases, Fig. 7(a) and (b). Moreover, there are no
obvious differences between the Minmod and the ENO version of the scheme, Fig. 7(b) and (c). This is true either for the solu-
tion itself, Fig. 7(b), or for the discretization error, Fig. 7(c). Lastly, Fig. 7(d) shows the evolution of wiin the computation do-
main: only four values are O(1). It is at these points that the monotonicity constraints play a role.

Fig. 8(a) shows the numerical solution on a stretched mesh ðDxmin=Dxmax ¼ 0:10Þ near the shock place: the shock is cap-
tured without any numerical oscillations. In Fig. 8(b), we compare the HLSM–HENO2 scheme with the HUWENO5 scheme: in
both cases, the shock is captured in the same way though those schemes are structurally very different.

Consequently, the monotonicity constraints, (17), produce numerical results that are equivalent to those obtained via a
more ‘‘classical” WENO procedure. In addition, the HLSM scheme is more accurate on smooth data.

4.3. Nonconvex flux

We use a nonconvex flux to test the convergence of the scheme to the physically correct solution. The ‘‘exact” solutions
are obtained from the HLSM scheme on a very fine grid. All the results presented below are obtained with N = 80 grid points.
The flux is selected as:
f ðuÞ ¼ 1
4
ðu2 � 1Þðu2 � 4Þ with the initial data : uðx; t ¼ 0Þ ¼

2 x < 0
�2 x > 0

�
ð54Þ



Fig. 6. Spectral analysis for the HLSM scheme. Discontinuous case: wi ¼ Oð1Þ. (a, b) HLSM–Minmod; (c, d) HLSM–HENO2.

Table 1
ut þ uux ¼ 0; uðx; t ¼ 0Þ ¼ 1=2þ sinðp� xÞ; HLSM–Minmod scheme ða ¼ 6Þ with periodic boundary conditions; t ¼ 1=2p; Dt ¼ Dx2=2; L1 and L1 errors.

N L1 Error L1 Order L1 Error L1 Order

10 1:36� 10�2 – 2:56� 10�2 –
20 5:01� 10�4 4.8 2:32� 10�3 3.1
40 8:05� 10�6 5.9 4:18� 10�5 5.8
80 2:52� 10�7 5 1:95� 10�6 5

160 8:27� 10�9 5 6:35� 10�8 5
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The exact solution is a centred rarefaction wave between two discontinuities, Fig. 9. Numerical results are presented at
t ¼ 1:20. Both versions of the HLSM scheme converge to entropy correct solution and there are not visible differences be-
tween those versions.



Table 2
ut þ uux ¼ 0; uðx; t ¼ 0Þ ¼ 1=2þ sinðp� xÞ; HLSM–HENO2 scheme ða ¼ 6Þ with periodic boundary conditions; t ¼ 1=2p; Dt ¼ Dx2=2; L1 and L1 errors.

N L1 Error L1 Order L1 Error L1 Order

10 4:78� 10�3 – 6:90� 10�3 –
20 1:75� 10�4 4.7 7:69� 10�4 3.1
40 7:96� 10�6 4.8 4:18� 10�5 4.2
80 2:52� 10�7 4.9 1:95� 10�6 5

160 8:27� 10�9 5 6:35� 10�8 5

Table 3
ut þ uux ¼ 0; uðx; t ¼ 0Þ ¼ 1=2þ sinðp� xÞ; HUWENO5 scheme with periodic boundary conditions; t ¼ 1=2p; Dt ¼ Dx2=2; L1 and L1 errors.

N L1 Error L1 Order L1 Error L1 Order

10 3:66� 10�3 – 7:29� 10�3 –
20 1:86� 10�4 4.1 8:03� 10�4 3
40 1:07� 10�5 3.9 6:06� 10�5 3.5
80 3:54� 10�7 4.9 2:73� 10�6 4.5

160 1:20� 10�8 4.9 9:27� 10�8 4.9

Fig. 7. Burgers equation. uðx; t ¼ 0Þ ¼ 1=2þ sinðpxÞ; t ¼ 3=2p; N ¼ 80; CFL ¼ 0:5; a ¼ 6. HLSM scheme: (a) HLSM–Minmod, (b) Comparison Minmod/
HENO2, (c) discretization error, (d) data-depending weight, wi .
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4.4. One-dimensional hyperbolic systems: the Euler equations

In what follows and unless mentioned, all the test cases are run with the value 2 for the monotonicity parameter, a. This value
is selected as the best compromise for the cases investigated and demonstrates the robustness of the method presented.
However, we shall show on some cases that the numerical results can be substantially improved if we modify a.
Fig. 8. Burgers equation. uðx; t ¼ 0Þ ¼ 1=2þ sinðpxÞ; t ¼ 3=2p; N ¼ 80; CFL ¼ 0:5; a ¼ 6. (a) HLSM–HENO2: non-uniform mesh (Dxmin=Dxmax ¼ 0:1Þ. (b)
Comparison between the HLSM–HENO2 scheme and the HUWENO5 scheme.

Fig. 9. Nonconvex flux: f ðuÞ ¼ 1
4 ðu2 � 1Þðu2 � 4Þ; ul ¼ 2; ur ¼ �2. t ¼ 1:20; N ¼ 80; CFL ¼ 0:5; a ¼ 6. (a) HLSM–HENO2, (b) HLSM–Minmod.

Table 4
One-dimensional Euler equations qðx; t ¼ 0Þ ¼ 1þ 0:2� sinðpxÞ; uðx; t ¼ 0Þ ¼ 1; pðx; t ¼ 0Þ ¼ 1 HLSM–Minmod/HENO2 ða ¼ 2Þ scheme with periodic bound-
ary conditions t ¼ 2; Dt ¼ Dx2=2; L1 and L1 errors of density q.

N L1 Error L1 Order L1 Error L1 Order

10 4:42� 10�3 – 3:45� 10�3 –
20 1:04� 10�4 5.4 8:13� 10�5 5.3
40 2:70� 10�6 5.2 2:12� 10�6 5.2
80 7:55� 10�8 5.2 5:93� 10�8 5.1

160 2:23� 10�9 5.1 1:88� 10�9 5
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The computations are run on a uniform mesh ðDxi � CteÞ, except for the last test-case. N grid points are utilized to dis-
cretize the equations.

The CFL number is defined as:
Table 5
One-dim
t ¼ 2; D

N

10
20
40
80

160
CFL � Dt �
max

i
ðjuij þ aiÞ

Dx
We choose CFL = 0.80 for almost all test cases, except for the accuracy tests.

Example 1. We solve the Euler equations, (41), in the domain [0,2]. The initial condition is set to be:
qðx; t ¼ 0Þ ¼ 1þ 0:2� sinðpxÞ; uðx; t ¼ 0Þ ¼ 1; pðx; t ¼ 0Þ ¼ 1, with a 2-periodic boundary condition. The numerical solution
is computed up to t ¼ 2 with Dt ¼ OðDx2Þ (HLSM and HUWENO5 schemes). The errors and numerical orders of accuracy of
the density, q, for the HLSM–HENO2 scheme (resp. HUWENO5 scheme) are shown in Table 4 (resp. Table 5). Results obtained
with the Minmod version are identical to the HENO2 version, even on coarse meshes. Both schemes reach their theoretical
order of accuracy and the HLSM and HUWENO5 schemes give equivalent results for this problem.

Example 2 (Lax problem). The Lax problem is defined by the following left- and right-initial states:
ðq;u;pÞ ¼ ð0:445; 0:698;3:528Þ 8x 6 0; ðq;u; pÞ ¼ ð0:5;0;0:571Þ 8x > 0
N = 100 grid points are used to discretize the computational domain [0,1]. The solution is run up to t ¼ 1:30. Numerical re-
sults are presented for the HLSM–HENO2 (Fig. 10-left) and the HLSM–Minmod schemes (Fig. 10-right). Differences between
both versions are clearly visible for this test case: the density profile is less oscillatory with the HENO2 version (Fig. 10-left),
while the pressure profile is better calculated by the HLSM–Minmod version (Fig. 10-right).

The contact discontinuity is smeared more than the shock but oscillations are clearly visible close to the contact
discontinuity, Fig. 10. The oscillatory behaviour of the component-wise reconstruction is even more pronounced in the
velocity profile. It should however be pointed out that, on the same mesh, these oscillations are less ‘‘noisy” than more
classical component-wise reconstructions such as the ENO scheme [2] or the CWENO scheme [17]. Moreover, those
oscillations become less significant when the mesh is refined.

Those results can be compared with the HUWENO5 scheme, Fig. 11-left: the HUWENO5 scheme gives results that are less
oscillatory when compared with the HLSM scheme. However, one must note that the contact discontinuity and the shock-
wave are more attenuated by the HUWENO scheme: clearly, this scheme is more dissipative. This dissipative nature, which is
an advantage in such a case, will become a drawback in tests that follow.

To improve those results, we could increase the dissipative nature of the HLSM scheme by increasing the monotonicity
parameter, a, in (25). For example, Fig. 11-right presents results obtained by the HLSM–Minmod procedure with a ¼ 15:
comparing to Fig. 10, oscillations are significantly reduced; however, the contact discontinuity and the shock are more
dissipated, now.

Consequently, keeping the same value for the monotonicity parameter a, the HLSM scheme has the important advantage
to tolerate component-wise reconstructions, without generating too many significant non-physical oscillations. Those
oscillations decay with the mesh, confirming the monotonicity behaviour of the scheme.

Example 3 (Shock interaction with entropy waves: the Shu–Osher problem [12]). We solve the Euler equations, (41), with a
moving Mach = 3 shock interacting with sine waves in density. The initial condition is defined as:\
ðq;u; pÞ ¼ ð3:857143;2:629369;10:333333Þ 8x < �4
ðq;u; pÞ ¼ ð1þ d sin 5x;0;1Þ 8x P �4
For this test, we take d ¼ 10�2. The computed density q is plotted at t ¼ 1:8 against the ‘‘exact” solution; this solution is a
converged solution computed by the HLSM scheme with 2500 grid points.

For N ¼ 200 grid points, we compare the numerical results obtained with the HLSM–HENO2, Fig. 12(a), and the HLSM–
Minmod schemes, Fig. 12(b): results are identical and the complex wave patterns after the shock entropy wave interaction
are well predicted; moreover, we can note that as long as a varies around an O(1) value, the smooth part of the solution
ensional Euler equations qðx; t ¼ 0Þ ¼ 1þ 0:2� sinðpxÞ; uðx; t ¼ 0Þ ¼ 1; pðx; t ¼ 0Þ ¼ 1 HUWENO5 scheme with periodic boundary conditions
t ¼ Dx2=2; L1 and L1 errors of density q.

L1 Error L1 Order L1 Error L1 Order

5:44� 10�3 – 4:25� 10�3 –
1:33� 10�4 5 1:04� 10�4 5
3:64� 10�6 4.9 2:86� 10�6 4.9
1:06� 10�7 5.1 8:36� 10�8 5.1
3:22� 10�9 4.9 2:66� 10�9 4.8



Fig. 10. The Lax problem. HLSM scheme. ðN ¼ 100; t ¼ 1:30; CFL ¼ 0:5; a ¼ 2Þ. Left: HLSM–HENO2, Right: HLSM–Minmod.
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remains unaltered. Comparing those results to those of the HUWENO5 scheme, Fig. 12(c), we can appreciate the dissipative
nature of the HUWENO5 scheme since N ¼ 300 grid points are necessary to get an equivalent accuracy.

Example 4 (Shock entropy wave interactions [4]). This problem is very suitable for high-order shock-capturing schemes
because both shocks and complicate smooth flow features co-exist. In this example, a moving shock interacts with an
entropy wave of small amplitude.

On the domain [0,5], the initial condition is the following:
ðq;u; pÞ ¼ ð3:857143;2:629369;10:333333Þ 8x < 1=2
ðq;u; pÞ ¼ ðe�e sinðkxÞ; 0;1Þ 8x P 1=2
where e and k are the amplitude and the wave number of the entropy wave, respectively.
The mean flow is a right moving Mach 3 shock. If e is small compared to the shock strength, the shock will go to the right

of the computational domain, at approximately the non-perturbed shock speed and generate a sound wave that travels along
with the flow behind the shock. At the same time, the small amplitude, low-frequency entropy waves are generated in front
of the shock. After having interacted with the shock, these waves are compressed in frequency and amplified in amplitude.

The main goal of such a test is to check if the structure of the amplified waves is not lost after having crossed the shock
wave. Since the entropy wave is very weak relative to the shock, any excessive numerical oscillation could alter the
generated waves and the entropy waves.

In our computations, we take e ¼ 0:01. Accordingly, the amplitude of the amplified entropy waves predicted by a linear
analysis, [14,15], is 0.08690716 (shown in the following figures as horizontal solid lines). The pre-shock wave number, k, is
selected such that k 2 f13;26g.

In order to get rid of the transient waves due to the initialization, the numerical procedure is defined so that the shock
crosses the computational domain twice. The numerical solution is examined when the shock reaches x ¼ 4:5 for the second
time. For those computations, the CFL is lowered to the value 0.250.

First, for k ¼ 13, and according to the spectral analysis above, we use 400 grid points that is effectively 10 points in each
wavelength of the generated entropy wave. The results are shown in Fig. 13(a) (HENO2 monotonicity constraint) and
Fig. 13(b) (Minmod constraint; the mean flow has been subtracted from the numerical solution).

We can see that the HLSM scheme – whatever the version considered – calculates the amplified entropy waves quite well,
although their amplitude is still attenuated. On a grid of 800 points, Fig. 13(c) and (d), the resolution becomes very good. To
compare, we produce the numerical results obtained with 1200 grid points, by using the HUWENO5 scheme, Fig. 13(e);
obviously, the scheme produces excessive damping of the entropy waves: the reason is given by the non-linear weights that
do not reach accurately their ideal values on such a grid. Lastly, Fig. 13(f) produces numerical results for k ¼ 26;N ¼ 800.
Even if the amplitude of the entropy waves is slightly attenuated behind the shock, the HLSM scheme (HENO2 constraint)
keeps on giving good results.

Example 5 (Propagation of sound waves through a transonic nozzle [16]). The computation of sound propagating through a
choked nozzle presents a challenging problem for a shock-capturing scheme. To reduce the complexity of the problem,
but retaining the basic physics and difficulties, this propagation problem is modelled by a one-dimensional acoustic wave
transmission problem through a transonic nozzle [16].
Fig. 11. The Lax problem. N ¼ 100; t ¼ 1:30; CFL ¼ 0:5 Left: HUWENO5 scheme; right: HLSM–Minmod ða ¼ 15Þ.
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In this problem, an acoustic wave is introduced at the nozzle inflow region and the sound wave that travels downstream
through the transonic nozzle and interacts with the shock is to be calculated. The amplitude of the incoming sound wave is
e ¼ 10�5, which is very small compared to the mean values of the flow. The nozzle flow is modelled by the one-dimensional
Euler equations with variable nozzle area:
Fig. 12.
scheme
@U
@t
þ @FðUÞ

@x
¼ �1

A
dA
dx

U0

U � ½q;qu;qE�t; F � ½qu;qu2 þ p;quH�t ; U0 � ½qu;qu2;quH�t
ð55Þ
The area of the nozzle is defined to be:
AðxÞ ¼
0:536572� 0:198086� exp �Logð2Þ x

0:6

� �2
	 


; x > 0

1:0� 0:661514� exp �Logð2Þ x
0:6

� �2
	 


; x < 0

8><>:
The Shu–Osher problem. Density q. t ¼ 1:80; CFL ¼ 0:8. (a) HLSM–HENO2 ðN ¼ 200; a ¼ 2Þ; (b) HLSM–Minmod ðN ¼ 200;a ¼ 2Þ; (c) HUWENO5
ðN ¼ 300Þ.



Fig. 13. Shock entropy wave interaction: t ¼ 2:2537; a ¼ 2; k ¼ 13. (a) HLSM–HENO2:N ¼ 400; (b) HLSM–Minmod:N ¼ 400; (c) HLSM–HENO2: N ¼ 800;
(d) HLSM–Minmod: N ¼ 800 (e) HUWENO5: N ¼ 1200; (f) HLSM–HENO2: k ¼ 26; N ¼ 800.
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Flow variables are non-dimensionalized by using the upstream values. The velocity scale is a1 (speed of sound), the length
scale is D (diameter of the nozzle) and the density scale is the static density, q1.

Then, the mean flow at the inlet is:
Fig. 14.
mean p
�q
�u
�p

264
375

inlet

¼
1

M1

1=c

264
375 ð56Þ
The Mach number at the inlet, M1, is 0.2006533 and the pressure at the exit, pexit , is 0.6071752, so that a shock is formed
inside the nozzle. The shock location is then: xs ¼ 0:3729.

Just upstream of the shock wave, the Mach number is M1 ¼ 1:465 and downstream, M2 ¼ 0:714. The pressure ratio
(intensity of the shock wave) is then p2=p1 ¼ 2:337.

The incoming acoustic wave, with angular frequency, x ¼ 0:6p, is described as:
q
u

p

264
375

acoustic

¼ e
1
1
1

264
375 sin x

x
1þM1

� t
� �� �

ð57Þ
The acoustic perturbations for the derivatives are derived from (57).
Propagation of sound waves through a transonic nozzle. HLSM scheme: CFL ¼ 0:8; N ¼ 180; a ¼ 2; Dxmin=Dxmax ¼ 0:192. (a) Steady-state solution:
ressure, (b) maximum residual. (c) Acoustic pressure at t ¼ 14T: HLSM–Minmod; (d) acoustic pressure: HLSM–HENO2.
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In the present work, the acoustic wave will be computed directly by solving the non-linear governing equations rather
than solving the linearized equations (see [16] for some examples on the linearized problem). This makes it harder to
compute the acoustic waves. The challenge is whether the small amplitude wave can still be captured into the computation
by the HLSM scheme. The computational domain is �10 6 x 6 10 and a non-uniform mesh, refined in the throat region, is
used.

To begin, the steady state of the nozzle flow is computed. For the flow variables, the initial conditions are specified by
using the mean exact solution of this problem.

The derivatives are then estimated by using a centred second-order finite-difference approximation. At the boundaries,
the back-pressure is specified at the outlet and the total pressure and density are specified at the inlet. The other needed
information at both the inlet and outlet, are obtained using extrapolation from their neighbouring mesh points. Concerning
the derivatives, all those quantities are set to zero at the inlet since the flow is assumed uniform. At the outlet, the pressure
derivative is set to zero while the remaining quantities are extrapolated in order for the error to leave the computational
domain without numerical reflections.

The steady-state solution of (55), obtained using a 180 points non-uniform mesh (Dxmin ¼ 6:74� 10�2;Dxmax ¼ 0:35Þ
with CFL = 0.80, is compared with the exact solution, Fig. 14(a). The solution is converged to machine precision, Fig. 14(b). It
can be seen that flow properties are uniform in most region of the nozzle, but change dramatically near the nozzle throat,
Fig. 14(a). Lastly, the shock is captured without any numerical oscillation.

After the steady-state flow-field is computed, the acoustic wave propagation can be simulated using the same non-linear
solver.
Fig. 15. Propagation of sound waves through a transonic nozzle. Acoustic pressure at t ¼ 14T HLSM scheme. (a, b) HLSM–Minmod: a ¼ 10; (c, d) HLSM–
HENO2: a ¼ 5.
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First, the initial conditions are specified using the steady-state solution previously calculated, then, at the inlet, the
solution (57) is superimposed for the variables and its derivatives.

Numerical solutions of the acoustic pressure at t ¼ 14T are shown in Fig. 14(c) and (d) and compared with the analytical
solution (given in [16]).

With N = 180 grid points, the wave pattern is correctly captured, either by the HLSM–HENO2 scheme, Fig. 14(c), or by the
HLSM–Minmod scheme, Fig. 14(d).

However, the amplitude of the acoustic wave at the shock location is larger than that indicated by the analytical solution:
this is due to a slight oscillation introduced by the scheme just at this place.

To improve these results, one can try to optimize the value of a for this particular test. Fig. 15 displays new numerical
results obtained with a ¼ 5 (HLSM–HENO2, Fig. 15(c) and (d)) or a ¼ 10 (HLSM–Minmod, Fig. 15(a) and (b)). As one can see
it, results are improved at the location of the discontinuity: the best results are obtained with the HLSM–Minmod version,
Fig. 15(a). Concerning the HLSM–HENO2 scheme, a limiting cycle appears into the convergence process when a increases,
Fig. 15(d): this limiting process prevents the convergence to a sufficiently low level and the acoustic fluctuations cannot be
calculated anymore with a sufficient accuracy.

In spite of this difficulty, one can note that the profiles of the acoustic pressure both upstream and downstream the shock
location, agree very well with the analytical solution, Figs. 14 and 15.

As it is known, any high-order scheme captures the shock with a first-order accuracy [13]; however, those results
demonstrate that this defect does not alter the smooth part of the solution: the multi-scale structure of the solution is
preserved after having crossed the shock wave. In other words, this result means that the numerical error generated by
capturing the shock remains confined and does not propagate. Thus, this property explains the good results obtained with
the HLSM scheme. The main advantage of such a scheme comes from its compactness and the definition of its non-linear
weight, wi, defined to modulate the monotonicity constraints: this enables to generate a local first-order correction when a
discontinuity appears.
5. Concluding remarks

In this paper, we constructed a new Hermite least-square interpolation (HLSM) for 1D hyperbolic conservation laws. This
new technique is aimed to deal with irregular meshes while preserving high-order accuracy.

When the solution is smooth, this procedure generates a fifth-order spatial accuracy. In regions of discontinuities, two
additional numerical constraints are introduced into the Hermite least-square system. These constraints impose that the
high-order reconstruction locally coincides with a low-order monotone reconstruction. To emulate those monotonicity con-
straints only in regions of non-smooth data, we developed a data-depending weight. According to the magnitude of this
weight, the monotonicity constraints either are discarded (the resulting scheme is fifth-order accurate) or emphasized
(the scheme locally behaves as a first-order scheme).

In addition, we introduced into the definition of this weight, a parameter that we called the ‘‘monotonicity parameter”.
This parameter is aimed to monitor the numerical dissipation at the location of a discontinuity. Accuracy and spectral anal-
ysis combined with numerical investigations gave us the following significant results:

– In regions of discontinuities, the spatial truncature error becomes first-order, resulting in a monotone behaviour of the
scheme. Increasing the monotonicity parameter results in an increase of the numerical dissipation of the scheme.
However, this dissipative term is bounded by that of an upwind first-order scheme.

– When the solution is smooth, the monotonicity parameter has no influence on the accuracy of the scheme.
– The specific form of the monotonicity constraints is significant only on coarse meshes. In such a case, an ENO con-

straint is desirable.
– The way of initializing the first-derivative has no influence neither on the accuracy of the scheme nor on its stability.
– On irregular meshes, the scheme efficiently calculates multi-scale problems without generating too much numerical

dissipation.

Considering those results, the HLSM method seems to perform reasonably well – at least for the numerical problems
investigated. In a next future, we shall develop a HLL Riemann solver that will be more suited for a Hermite formulation.
In that case, the benefit hoped is an improvement of the handling of contact discontinuities or strong expansions.
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Appendix. Spectral analysis for the HLSM scheme

This study required the intensive use of the MAPLE symbolic mathematical computer package.
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We start this analysis from the linear semi-discrete form (47):
dU
dt

����
i

þ a
UL

iþ1=2 � UL
i�1=2

Dx
¼ 0 ðA1Þ
This form is supposed to be the discretized form, by the HLSM method, of Eq. (46). Now, assuming that the calculation do-
main is periodic, we decompose the discrete vector solution, Ui � ð�ui;�riÞt , in Fourier series:
Ui ¼ bU � ejkxi ðj2 ¼ �1Þ ðA2Þ
where bU � ðû; r̂Þt represents the complex amplitude of the vector solution and k, the wave number of the periodic signal.
Inserting (A2) into (A1) produces the following result:
dbU
dt
¼ Gðb; m;aÞ � bU ðA3Þ
Gðb; m;aÞ is a complex 2� 2 matrix that represents the discrete Fourier transform of the spatial operator in (A1). This matrix
only depends upon the phase angle, b ð� kDxÞ, the CFL number, m ð� aDt=DxÞ and the ‘‘monotonicity parameter”, a.

To explicitly formulate Gðb; m;aÞ, we need to develop the characteristics of the HLSM scheme.
Thus, the HLSM reconstruction necessitates inverting the following 6� 4 linear least-square problem (Eq. (19) modified

by (26)):
L� A ¼ B ðA4Þ
with L � ½Lj�tj2f1;...;6g: metric terms (modified by wi for L5;6Þ; A � f~ajgj2f1;2;3;4g

h it
: polynomial coefficients; B � ½�ui�1�

�ui; �uiþ1 � �u;�ri�1 � �ri;�riþ1 � �r;wi � B5;�wi � B5�t: numerical constraints.
To get an analytical solution for A, system (A4) is partially inverted via a Gram–Schmidt process. This way, system (A4)

becomes:
R� A ¼ Q t � B ðA5Þ
where Q is a symmetric and orthogonal 6� 6 matrix resulting from the L ¼ Q � R decomposition; R is an upper-triangular
4� 6 matrix. Both matrices only depend upon the metric terms identified by Eq. (12). The monotonicity parameter, a, explic-
itly appears in those terms through the introduction of the weight, wi.

Therefore, inserting (A2) into (A5), the resulting system can be explicitly solved for the vector bA � ½fâjgj2f1;2;3;4g�
t , which

now represents the Fourier transform of the initial vector, A ðfâjg � Fourier transform of the space derivatives, fajgÞ.
Thus, we get in the Fourier space the following result:
bA ¼ Lðb;aÞ � bUðb � k� DxÞ ðA6Þ
Then, it becomes possible to evaluate the Fourier transform of the interpolated values ðuL
iþ1=2; r

L
iþ1=2Þ:
ûL
iþ1=2 ¼ ûþ â1

Dx
2 þ â2

Dx2

6 þ â3
Dx3

8 þ â4
Dx4

20

	 

� ejkxi

r̂L
iþ1=2 ¼ r̂ þ â2Dxþ â3

Dx2

2 þ â4
Dx3

2

	 

� ejkxi

8><>: ðA7Þ
Consequently, evaluating the expression: aDt �
bU L

iþ1=2�
bU L

i�1=2

Dx , one can explicitly formulate the complex matrix, Gðb; m;aÞ, in
(A3); this matrix is too complicated to be given in this paper.

Finally, integrating (A3) by the third-order TVD Runge–Kutta scheme,[12], over the interval ½tn; tnþ1�, produces the follow-
ing result:
bUnþ1 ¼ Gðb; m;aÞ � bUn ðA8Þ
where: Gðb; m;aÞ � Idþ G� Idþ 1
2 G� Idþ 1

3 G

 �
 �
 �

is a 2� 2 complex matrix; Id represents the 2� 2 identity matrix.
Gðb; m;aÞ is called the ‘‘amplification matrix” of the scheme and makes it possible to analyze the numerical properties of

the HLSM discretization.
For this purpose, the exact amplification matrix for (46) must be specified. Using a continuous Fourier transform of (46),

we get the differential form:
dbU
dt
þ jka� bUðtÞ ¼ 0 ðA9Þ
Integrating, exactly, this form between tn and tnþ1, we obtain:
bUnþ1 ¼ e�jmb � bUn ðA10Þ
Specifically, if Uðx; t ¼ 0Þ ¼ ½cos kx;�k sin kx�t , then the relation that follows can be obtained from (A10):
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bUnþ1 ¼
1
jb
Dx

" #
� e�jðnþ1Þmb ðA11Þ
From this result, we can identify the following quantities:
reðbÞ � ½1; jb=Dx�t

keðb; mÞ � e�jmb

ŵeðb; mÞ � 1

8><>: ðA12Þ
keðb; mÞ represents the exact eigenvalue of system (46), reðbÞ is its associated eigenvector while ŵeðb; mÞ represents the com-
plex amplitude of the exact solution.

Now, returning to the amplification matrix, Gðb; m;aÞ, we can calculate its eigenvalues: k1ðb; m;aÞ and k2ðb; m;aÞ.
Defining K � diag½k1; k2�, one can also write: G � RKR�1; where the matrix R is defined as the matrix of the right eigen-

vectors of Gðb; m;aÞ : R � ½r1ðb; mÞ; r2ðb; mÞ�t .
Finally, by defining cW � ½ŵ1; ŵ2�t � R�1 � bU and inserting this definition into relation (A8), one obtains by recurrence:
bUnþ1 ¼ knþ1
1 bw0

1br1 þ knþ1
2 ŵ0

2 r̂2 ðA13Þ
By definition, the first component of the right-hand term is called the ‘‘accurate component” of the numerical solution. In
other words, if we compare (A11) with (A13), the quantity knþ1

1 ŵ0
1r̂1 represents the approximation of the quantity

½1; jb=Dx�t � e�jðnþ1Þmb. More precisely, using (A12) we can specify the following approximations:
k1ðb; m;aÞ � e�jmb

r1ðb; m;aÞ � ½1; jb=Dx�t

ŵ1ðb; m;aÞ � 1

8><>: ðA14Þ
Practically, the ‘‘accurate eigenvalue”, k1ðb; m;aÞ, is identified from Gðb; m;aÞ by using the consistency condition:
k1ðb; m;aÞ !
b!0

1 ðA15Þ
Then, its associated eigenvector, r1ðb; m;aÞ, can be evaluated. ŵ0
1, which represents the complex amplitude at t = 0, of the

accurate component of the solution, is calculated from the initial conditions for bU0.
For example, if Uðx; t ¼ 0Þ � ½cos kx;�k sin kx�t and if this initial condition is approximated by a second-order centred dis-

cretization, then we get the result:
bU0 ¼ ½1; j sin b=Dx�t ðA16Þ
Therefore, by writing (A13) at t = 0, we obtain the relation:
bU0 ¼ ŵ0
1r1 þ ŵ0

2r2 ðA17Þ
By using (A16), system (A17) is easily inverted to determine ŵ1;2.
By contrast, the remaining component in the right-hand side of (A13) is called the ‘‘spurious component” of the numerical

solution. This component is a general characteristic of extended algebraic systems that use auxiliary variables – in our case,
the first-derivative of the solution – and has no counterpart in the differential problem. This component represents the
behaviour of the numerical error introduced either at the boundaries or at t = 0, by the approximation of the first derivative;
it can also be excited on highly distorted meshes.

The spurious component of the numerical solution must be damped in time, whatever the mesh, so that the accurate part
of the solution is not affected. For a more detailed explanation about the notion of ‘‘spurious component” and its behaviour,
we refer the interested reader to [1].

Finally, knowing the analytical form of Gðb; m;aÞ, the spectral analysis of the HLSM scheme can be fully managed by defin-
ing the following quantities:

– the discretization error at t ¼ tn : e�jnmb � kn
1ŵ0

1r1
�� ��

– the spurious error at t ¼ tn : kn
2ŵ0

2r2

�� ��
– the truncature error (space and time): e�jmb � k1

�� ��=b
– the amplitude error: 1� jk1j
– the phase error: j1þ Argðk1Þ=mbj

Those quantities are parameterized by the number of cells-per-wavelength, N ðN � b ¼ 2pÞ, the CFL number, m and the mono-
tonicity parameter, a.
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